Contribution from the Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

# Vapor Complexes of Uranium Pentachloride and Uranium Tetrachloride with Aluminum Chloride. The Nature of Gaseous Uranium Pentachloride

#### BY D. M. GRUEN AND R. L. MCBETH

### Received May 1, 1969

The following three reactions were studied spectrophotometrically: (1)  $2UCl_4(s) + Cl_2(g) = U_2Cl_{10}(g)$ ,  $\Delta F = 15,132 - 15.38T \text{ cal/mol} (450-650^{\circ}\text{K})$ ; (2)  $UCl_4(s) + \frac{1}{2}Al_2Cl_6(g) + \frac{1}{2}Cl_2(g) = UCl_5 \cdot AlCl_3(g)$ ,  $\Delta F = 8914 - 10.74T \text{ cal/mol} (440-630^{\circ}\text{K})$ ; (3)  $UCl_4(s) + Al_2Cl_6(g) = UCl_2(AlCl_4)_2(g)$ ,  $\Delta F = 15,780 - 15.30T \text{ cal/mol} (600-800^{\circ}\text{K})$ . The volatility ratios  $V_r = (P_{UCl_2(AlCl_4)_2} \text{ in 1 atm of } Al_2Cl_6)/P_{UCl_4}$  are found to be  $\sim 10^7 \text{ at } 500^{\circ}\text{K}$ ,  $\sim 10^4 \text{ at } 600^{\circ}\text{K}$ , and  $\sim 10^3 \text{ at } 700^{\circ}\text{K}$ . The partial pressure of  $UCl_5 \cdot AlCl_3$  is 34 mm at 500°K, 1 atm of  $Al_2Cl_6$ , and 1 atm of  $Cl_2$ . Uranium pentachloride was found to vaporize as a dimer molecule. The electronic absorption spectrum of gaseous  $U_2Cl_{10}$  was interpreted in terms of two Cl octahedra sharing an edge with U atoms at positions of approximately octahedral symmetry.

#### Introduction

Recognition of the existence of volatile complexes between aluminum chloride and metal chlorides widely distributed throughout the periodic table has motivated recent work on the neodymium chloride--aluminum chloride complex.<sup>1,2</sup> It is of interest to extend such studies to a variety of different metal halide systems in order to discover the stoichiometries and molecular structures of the vapor species, to gain an insight into the factors governing the stabilities and relative volatilities of the complexes, and to determine the thermodynamics of the reactions.

The existence and some properties of the uranium tetrachloride–aluminum chloride complex have been described.<sup>3</sup> The present paper gives additional data and a more complete analysis of this system, as well as of the uranium pentachloride–aluminum chloride system. An important prerequisite for an understanding of the latter system is information concerning gaseous uranium pentachloride. The first part of the paper, therefore, is devoted to an account of an investigation of the nature of gaseous uranium pentachloride.

### **Results and Discussion**

**Uranium Pentachloride.**—Uranium pentachloride was discovered by Roscoe<sup>4</sup> in 1874 as a by-product of the preparation of UCl<sub>4</sub>. The compound is thermally unstable decomposing<sup>5</sup> in an inert atmosphere below  $525^{\circ}$ K to UCl<sub>4</sub> and Cl<sub>2</sub> or disproportionating to UCl<sub>4</sub> and UCl<sub>6</sub> between 370 and  $450^{\circ}$ K under a high vacuum.<sup>6</sup> Because of this behavior, doubts have been expressed concerning the possibility of UCl<sub>5</sub> existing as a vapor above  $330^{\circ}$ K where its vapor pressure is estimated to be  $\sim 10^{-7}$  mm.<sup>6</sup>

Gaseous uranium pentachloride is readily formed in a sealed cell containing  $UCl_4$  and  $Cl_2$  gas as described in the Experimental Section. The spectra of  $UCl_5$  between

(5) H. Martin and K. H. Eldau, Z. Anorg. Allgem. Chem., 261, 295 (1943).
(6) J. J. Katz and E. Rabinowitch, "The Chemistry of Uranium," NNES, VIII-5, McGraw-Hill Book Co., Inc., New York, N. Y., 1951, pp 496, 497.

597 and 1031°K are reproduced in Figure 1. The molar absorptivities of the vapor species were determined in separate experiments in which cells containing 10 mg of UCl<sub>4</sub> and 2 atm of Cl<sub>2</sub> were employed. The absorbance of the 6658-cm<sup>-1</sup> peak was followed as a function of temperature and found to remain nearly constant between 575 and 625°K showing that all of the UCl<sub>4</sub> initially added to the cell had vaporized. The measured absorbance from 4000 to 12,000 cm<sup>-1</sup> is due solely to UCl<sub>5</sub> since Cl<sub>2</sub> does not absorb in this spectral region. Furthermore, UCl<sub>4</sub> does not contribute to the absorption at temperatures less than 675°K since its vapor pressure is  $10^{-2}$  mm.

The relation

$$\epsilon = A/cl \tag{1}$$

where  $\epsilon$  is the molar absorptivity, A is the absorbance, c is the concentration in moles per liter, and l is the path length in centimeters was used to calculate the molar absorptivities employing the measured absorbances, the known cell volume, the cell path length, and the amount of UCl<sub>4</sub> weighed into the cell. The  $\epsilon$ 's are readily obtainable from the curves shown in Figure 1;  $\epsilon_{66558 \text{ cm}^{-1}}$  is 19.

It is obvious from an examination of Figure 1 that the UCl<sub>5</sub> spectrum undergoes drastic changes with temperature. The most obvious changes involve a decrease in the intensity of the 6658-cm<sup>-1</sup> peak with increasing temperature and the simultaneous appearance of prominent absorption bands at 7215 and 8197 cm<sup>-1</sup>. The "low" temperature spectrum (curve A in Figure 1 and curve B in Figure 2) persists virtually unchanged in the temperature range 450-650°K, strongly indicating that a single vapor species is responsible for the light absorption.

In order to identify the "low" temperature vapor species, which has up to now been assumed to be  $UCl_5$ , a series of experiments at different  $Cl_2$  pressures was performed. Measured amounts of  $Cl_2$  gas were condensed into cells containing 0.1-0.2 g of  $UCl_4$  so as to give 0.88 atm (expt 39E), 1.8 atm (expt 35E), and 3.4 atm (expt 42E) of pressure at 298°K. Spectra were

<sup>(1)</sup> D. M. Gruen and H. A. Øye, Inorg. Nucl. Chem. Letters, 3, 453 (1967).

<sup>(2)</sup> H. A. Øye and D. M. Gruen, J. Am. Chem. Soc., 91, 2229 (1969).
(3) D. M. Gruen and R. L. McBeth, Inorg. Nucl. Chem. Letters, 4, 299 (1968).

<sup>(4)</sup> H. Roscoe, Ber., 7, 1131 (1874).



Figure 1.--Absorption spectra of gaseous uranium pentachloride at various temperatures: A, 597°K; B, 747°K; C, 844°K; D, 1031°K.



Figure 2.—Absorption spectra of gaseous UCl<sub>5</sub>·AlCl<sub>3</sub> complex at 596°K (A) and of gaseous U<sub>2</sub>Cl<sub>10</sub> at 597°K (B).

measured in the range 450-650 °K. The vapor pressure of the gaseous uranium species was determined from the measured absorbancies and the previously determined  $\epsilon$ 's using the relation

$$P_{\rm atm} = ART/\epsilon l \tag{2}$$

The data obtained in this series of experiments are listed in Table I with pressures in millimeters calculated for the  $U_2Cl_{10}$  dimer. The data were evaluated by considering the three equilibria

$$2UCl_4(s) + Cl_2(g) = U_2Cl_{10}(g)$$
(3)

$$UCl_4(s) + \frac{1}{2}Cl_2(g) = UCl_5(g)$$
 (4)

$$2\mathrm{UCl}_4(\mathrm{s}) + 2\mathrm{Cl}_2(\mathrm{g}) = \mathrm{UCl}_5\mathrm{Cl}_2\mathrm{UCl}_5(\mathrm{g}) \tag{5}$$

The  $Cl_2$  pressures listed in Table I have been corrected for  $Cl_2$  consumption due to reaction 3.

Calculations were made of log K for each of the three reactions using all of the data points listed in Table I. The results of the calculations are shown graphically in Figure 3 where the log K's are plotted vs.  $1/T_{\min}$  with least-squares lines drawn through the

points. The sums of the squared deviations are 0.018, 0.200, and 0.903 for equilibria 3, 4, and 5, respectively. Equilibrium 3 thus forms the basis of a significantly better fit for the data in the 450-650 °K range than either (4) or (5). A consideration of these findings leads to the conclusion that the reaction of Cl<sub>2</sub> with UCl<sub>4</sub> results in the formation of U<sub>2</sub>Cl<sub>10</sub> dimer molecules.

The free energy change for reaction 3 in the range 450-650 °K is calculated to be

$$\Delta F = -RT \ln K = 15,132 - 15.38T \text{ cal/mol} \quad (6)$$

It is to be noted that K for reaction 3 is a dimensionless quantity. The pressure of  $U_2Cl_{10}$  dimer as a function of temperature and  $Cl_2$  pressure is given by

$$\log P_{\rm U_2Cl_{10}} = -\frac{3307}{T} + 3.361 + \log P_{\rm Cl_2} \tag{7}$$

The existence of  $U_2Cl_{10}$  dimer molecules in the vapor phase is of considerable interest. The crystal structure of UCl<sub>5</sub> has recently been found by Smith, *et al.*,<sup>7</sup> to be

| $n_1 \text{UCl}_4(s) + n_2 \text{Cl}_2(g) = \text{U}_{n_1} \text{Cl}_{4n_1+2n_2}$ |              |                  |               |                |                  |         |  |  |
|-----------------------------------------------------------------------------------|--------------|------------------|---------------|----------------|------------------|---------|--|--|
|                                                                                   | $T_{\min}$ , | $\overline{T}$ , | Pr            | essure,        | mm               | Absorb- |  |  |
| Conditions                                                                        | °К           | °K               | $P^{0}C1_{2}$ | $P_{\rm Cl_2}$ | $P_{U_2Cl_{10}}$ | ance    |  |  |
| Expt 35E                                                                          | 545.4        | 554              | 2541          | 2536           | 4.86             | 0.110   |  |  |
| $W_{\rm UCl_4} = 0.0760  {\rm g}$                                                 | 571.6        | 578              | 2651          | 2641           | 9.83             | 0.213   |  |  |
| $P_{\rm Cl_2}$ at 298°K = 1367 mm                                                 | 597.2        | 602              | 2762          | 2744           | 18.26            | 0.380   |  |  |
| $V = 59.84 \mathrm{ml}$                                                           | 610.2        | 616              | 2826          | 2798           | 28.03            | 0.570   |  |  |
| $l = 20.54 \mathrm{cm}$                                                           | 648.4        | 655              | 3005          | 2945           | 59.62            | 1.140   |  |  |
| Expt 39E                                                                          | 574.2        | 581              | 1304          | 1299           | 4.93             | 0,104   |  |  |
| $W_{\rm UCl_4} = 0.0360  {\rm g}$                                                 | 587.0        | 593              | 1331          | 1324           | 7.26             | 0.150   |  |  |
| $P^{0}_{Cl_{2}}$ at 298°K = 669 mm<br>V = 60.49 ml                                | 627.0        | 633              | 1421          | 1403           | 17,83            | 0,345   |  |  |
| l = 20.09  cm                                                                     |              |                  |               |                |                  |         |  |  |
| Expt 42E                                                                          | 541.0        | 549              | 4808          | 4798           | 9.52             | 0.204   |  |  |
| $W_{\rm UCl_4} = 0.1538  {\rm g}$                                                 | 567.7        | 574              | 5027          | 5011           | 15,95            | 0.327   |  |  |
| $P_{Cl_2}$ at 298°K = 2610 mm                                                     | 529.8        | 537              | 4703          | 4697           | 6,34             | 0.139   |  |  |
| V = 73.5  ml                                                                      | 554.1        | 561              | 4913          | 4901           | 11.68            | 0.245   |  |  |
| l = 19.30  cm                                                                     | 580.4        | 586              | 5132          | 5110           | 21,91            | 0.440   |  |  |
|                                                                                   | 608.0        | 615              | 5386          | 5344           | 42.33            | 0.810   |  |  |
|                                                                                   | 634,8        | 641              | 5614          | 5537           | 77.34            | 1.420   |  |  |
|                                                                                   | 660.8        | 667              | 5842          | 5719           | 122.99           | 2.170   |  |  |
|                                                                                   | 594.4        | 600              | 5255          | 5223           | 32.12            | 0.630   |  |  |
|                                                                                   | 460.7        | 472              | 4134          | 4133           | 0.68             | 0.017   |  |  |
|                                                                                   | 512.8        | 522              | 4572          | 4569           | 3.37             | 0.076   |  |  |
|                                                                                   | 482.8        | 494              | 4327          | 4326           | 1.47             | 0.035   |  |  |
|                                                                                   | 498.8        | 509              | 4458          | 4456           | 2.21             | 0.051   |  |  |

TABLE I

based on cubic closest packing of chlorine atoms, in which uranium atoms occupy one-fifth of the octahedral holes. Two such octahedra share an edge to form a U<sub>2</sub>Cl<sub>10</sub> dimeric unit. U-Cl distances involving bridging Cl are 2.67 and 2.70 Å; those involving nonbridging Cl are 2.43, 2.43, 2.44, and 2.44 Å. Uranium atoms in the  $U_2Cl_{10}$  units are each shifted by about 0.20 Å from the centers of the octahedra away from each other. In the solid, therefore, the dimeric form is a wellestablished entity. However, the only previous information concerning the independent existence of  $U_2Cl_{10}$ is an ebullioscopic study of a solution of UCl<sub>5</sub> in CCl<sub>4</sub> which found the molecular weight of the dissolved species to correspond quite closely to that of the dimer.8

The dimeric configuration of U<sub>2</sub>Cl<sub>10</sub> in the solid is very similar to that found in crystalline NbCl5 and TaCl<sub>5</sub>,<sup>9</sup> in MoCl<sub>5</sub>,<sup>10</sup> in ReCl<sub>5</sub>,<sup>11</sup> and in PaBr<sub>5</sub><sup>12</sup> but differs completely from the infinite chains of pentagonal bipyramids sharing edges found in PaCl<sub>5</sub>.<sup>13</sup> Of these compounds, NbCl<sub>5</sub> appears to have been studied most intensively in solution and in the vapor phase.<sup>14</sup> The occurrence of Nb<sub>2</sub>Cl<sub>10</sub> dimers has been demonstrated by ebullioscopic<sup>15</sup> and by spectroscopic studies<sup>14</sup> of solutions of NbCl<sub>5</sub> in CCl<sub>4</sub>. However, gaseous NbCl<sub>5</sub> has been shown by vapor density measurements<sup>16</sup> and by ir spectra of matrix-isolated molecules14 to be monomeric. The  $U_2Cl_{10}$  molecule, therefore, appears to be

(14) R. D. Werder, R. A. Frey, and Hs. H. Gunthard, J. Chem. Phys., 47, 4159 (1967). References to the earlier literature on NbCls can be found in this paper.



Figure 3.—Plots of log K vs.  $1/T_{min}$  for reactions 3–5.

the first dimer to be identified in the gas phase for this series of metal pentachlorides.

The electronic spectrum of the gaseous U<sub>2</sub>Cl<sub>10</sub> dimer molecule (Figure 2B) is remarkably similar to the spectra of a number of salts of the type  $R_4NUCl_6$  (R =  $CH_3$ ,  $n-C_3H_7$ ) or MUCl<sub>6</sub> (M = Rb, Cs) dissolved in a variety of nonaqueous solvents such as SOC12, POC13, CH<sub>3</sub>CN, and CH<sub>3</sub>NO<sub>2</sub>.<sup>17</sup> Selbin, Ortego, and Gritzner interpreted these solution spectra<sup>17</sup> on the reasonable assumption that they were due to the octahedral complex ion  $UCl_6^-$ . The similarity of the  $U_2Cl_{10}$  and the UCl<sub>6</sub><sup>--</sup> spectra shows that the uranium atoms in the  $U_2Cl_{10}$  dimer molecules are also in positions of approximately octahedral symmetry. The close correspondences of the energies of the absorption maxima furthermore indicates that the ligand field splitting experienced by the single unpaired 5f electron due to six nearest chloride neighbors is comparable in U<sub>2</sub>Cl<sub>10</sub> and in UCl<sub>6</sub>-.

Under the combined influence of the spin-orbit coupling interaction and a ligand field of octahedral symmetry, the <sup>2</sup>F state splits up into five energy levels<sup>18-22</sup> whose labels in terms of the irreducible representations of the double group are shown in Figure 4.

The absorption bands of  $U_2Cl_{10}$  may be assigned as follows. The lowest energy band with maximum at 4386 cm<sup>-1</sup> is assigned to the transition  $\Gamma_7 \rightarrow \Gamma_8$ . The

(17) J. Selbin, J. D. Ortego, and G. Gritzner, Inorg. Chem., 7, 976 (1968); J. Selbin and J. D. Ortego, Chem. Rev., 69, 657 (1969)

(18) G. L. Goodman and M. Fred, J. Chem. Phys., 30, 849 (1959).

<sup>(8)</sup> H. L. Gorin, R. S. Lowrie, and J. V. Hubbard, Report CD-5.350.8, Feb 28, 1946; quoted in ref 6, p 493, as CEW-TEC 29.

<sup>(9)</sup> A. Zalkin and D. E. Sands, Acta Cryst., 11, 615 (1958).

<sup>(10)</sup> D. E. Sands and A. Zalkin, ibid., 12, 723 (1959).

<sup>(11)</sup> K. Mucker, G. S. Smith, and Q. Johnson, ibid., B24, 874 (1968).

<sup>(12)</sup> D. Brown, T. J. Petcher, and A. J. Smith, Nature, 217, 737 (1968).

<sup>(13)</sup> R. P. Dodge, G. S. Smith, Q. Johnson, and R. E. Elson, Acta Cryst., 22, 85 (1967).

<sup>(15)</sup> D. Kepert and R. Nyholm, J. Chem. Soc., 2871 (1965)

<sup>(16)</sup> L. Nisel'son, A. Pustil'nik, and T. Sokolova, Russ. J. Inorg. Chem., 9, 574 (1964).

<sup>(19)</sup> J. D. Axe, H. J. Stapleton, and C. D. Jeffries, Phys. Rev., 121, Series 2, 1630 (1961).

<sup>(20)</sup> J. C. Eisenstein and M. H. L. Pryce, Proc. Roy. Soc. (London), A255. 181 (1960).

<sup>(21)</sup> D. G. Karraker, Inorg. Chem., 3, 1618 (1964).

<sup>(22)</sup> M. J. Reisfeld and G. A. Crosby, ibid., 4, 65 (1965).



Figure 4.—Schematic energy level diagram for a <sup>2</sup>F state split by the combined action of the spin-orbit coupling and octahedral ligand field perturbations.

next group of bands whose most intense component is at 6658 cm<sup>-1</sup> is assigned to the  $\Gamma_7 \rightarrow \Gamma_7'$  transition. The structure within this band is presumably vibronic in origin. Satten and coworkers<sup>23,24</sup> had shown that the absorption spectrum of the  $UCl_{6^2}$  - complex (5f<sup>2</sup> configuration) may be understood on the basis of vibronic coupling involving electronic dipole transitions arising from simultaneous change in electronic state and a quantum of an odd vibrational mode of the  $UCl_{6}^{2-}$  complex. For octahedral symmetry, the  $0 \rightarrow 0$ transitions are very strongly forbidden and the observed spectrum arises from a vibronic interaction of the  $0 \rightarrow 0$  transition with one quantum of an odd mode of the molecule. Since there is no information on the vibrational spectrum of the dimer molecule, it is premature to attempt an analysis of the vibronic structure of the band in the 6600-cm<sup>-1</sup> region. However, we call attention to a weak absorption band at  $6369 \text{ cm}^{-1}$ in the UCl<sub>3</sub>·AlCl<sub>3</sub> complex spectrum (Figure 2A) and tentatively assign this band to the  $\Gamma_7 \rightarrow \Gamma_7' (0 \rightarrow 0)$ transition.

The next pair of absorption bands located at 8850 and 9615 cm<sup>-1</sup> is assigned to the  $\Gamma_7 \rightarrow \Gamma_8'$  transition which, as pointed out by Eisenstein and Pryce,<sup>20</sup> could experience a Jahn-Teller splitting of considerable magnitude. The 765-cm<sup>-1</sup> splitting of the  $\Gamma_8'$  level found for U<sub>2</sub>Cl<sub>10</sub> is somewhat larger than that for UCl<sub>6</sub><sup>-</sup> (540 cm<sup>-1</sup>) but smaller than the value 825 cm<sup>-1</sup> found for a solution of the uranium pentachloride-trichloroacrylyl chloride addition compound in SOCl<sub>2</sub><sup>17</sup> in which a species with C<sub>4v</sub> symmetry presumably gives rise to the spectrum.

An intense charge-transfer band obscures the highest energy  $\Gamma_7 \rightarrow \Gamma_6$  transition in the case of U<sub>2</sub>Cl<sub>10</sub>. However, the charge-transfer band is shifted to higher energies in the case of the aluminum chloride complex (Figure 2A) thus revealing the  $\Gamma_7 \rightarrow \Gamma_6$  transition at 12,195 cm<sup>-1</sup>. The close similarity of the U<sub>2</sub>Cl<sub>10</sub> and (23) R. A. Satten, D. J. Young, and D. M. Gruen J. Chem. Phys., **33**, 1140 the aluminum chloride-uranium pentachloride vapor spectra in the 4000-10,000-cm<sup>-1</sup> region leads one to suspect that the  $\Gamma_7 \rightarrow \Gamma_6$  transition occurs at about the same energy in both molecules.

It is tempting to speculate as to the nature of the process responsible for the temperature variation in the  $U_2Cl_{10}$  spectrum (Figure 1). There appears to be a correlation, which has not yet been quantitatively evaluated, between the decreasing intensity of the 6658-cm<sup>-1</sup> band and the increase in the intensity of the 7215-cm<sup>-1</sup> band. Whether these spectral changes can be interpreted on the basis of a dissociative equilibrium of the type

$$U_2 Cl_{10}(g) = 2U Cl_5(g)$$
 (8)

is a problem requiring further investigation.

Uranium Pentachloride–Aluminum Chloride Vapor Complex.—Having established that in the temperature range 450-650 °K the reaction of  $Cl_2(g)$  with  $UCl_4(s)$ results in the formation of  $U_2Cl_{10}$  dimer molecules in which the uranium atoms are in a distorted octahedral environment, it was of interest to determine if uranium pentachloride forms a vapor complex with aluminum chloride, to study the thermodynamics of such a reaction, and to establish the stoichiometry and molecular geometry of the complex species.

The equilibrium

$$n_1 \text{UCl}_4(s) + n_2 \text{Al}_2 \text{Cl}_6(g) + n_3 \text{Cl}_2(g) =$$
  
 $U_{n_1} \text{Al}_{2n_2} \text{Cl}_{4n_1 + 6n_2 + 2n_3}(g)$  (9)

was studied spectrophotometrically. Sealed quartz optical cells were used containing known amounts of  $UCl_4(s)$ ,  $AlCl_3(s)$ , and  $Cl_2(g)$ . The amounts of  $AlCl_3$ were adjusted so that all of the  $AlCl_3$  in the cell was in the vapor phase at 440°K and above. In the temperature range of the measurements, 440–630°K, the vapor pressure of pure UCl<sub>4</sub> is very low and UCl<sub>4</sub>(g) does not contribute to the absorption of light. The measured optical densities in the visible region are therefore due only to the UCl<sub>5</sub>-containing species. Three types of experiments were carried out.

(a) It was ascertained by visual inspection and by X-ray analysis that the solid phase present in equilibrium with  $Al_2Cl_6(g)$  and  $Cl_2(g)$  at  $400^\circ K$  and above was UCl<sub>4</sub>.

(b) The molar absorptivity of the complex was determined in a manner identical with that described for gaseous  $U_2Cl_{10}$  except that the experiment was performed in the presence of 2 atm of  $Al_2Cl_0(g)$  and  $Cl_2(g)$ . The molar absorptivities of the U(V)-Al-Cl complex at selected wavelengths of absorption at 596°K are listed in Table II. No consistent variation

|                                            |      | TA               | ble II     |                  |      |  |  |  |  |
|--------------------------------------------|------|------------------|------------|------------------|------|--|--|--|--|
|                                            | Mo   | lar Absoi        | RPTIVITIES | $(\epsilon)$ of  |      |  |  |  |  |
| The $UCl_5 \cdot AlCl_3$ Complex at 596°K. |      |                  |            |                  |      |  |  |  |  |
| Cm <sup>-1</sup>                           | e    | Cm <sup>-1</sup> | e          | Cm <sup>-1</sup> | e    |  |  |  |  |
| 4484                                       | 21.0 | 6649             | 21.3       | 7,604            | 0.6  |  |  |  |  |
| 6297                                       | 0.8  | 6748             | 8.2        | 8,850            | 8.5  |  |  |  |  |
| 6369                                       | 1.8  | 7003             | 1.0        | 9,615            | 8.8  |  |  |  |  |
| 6562                                       | 12.8 | 7194             | 0.5        | 12,195           | 22.7 |  |  |  |  |
| 6605                                       | 11.9 |                  |            |                  |      |  |  |  |  |

<sup>(1960).
(24)</sup> S. A. Pollack and R. A. Satten, *ibid.*, **36**, 804 (1962).

|                                           | $n_1 \text{UCl}_4(s) + n_2 \text{Al}_2 \text{Cl}_6(g) + n_3 \text{Cl}_2(g) = \text{U}_{n_1} \text{Al}_{2n_2} \text{Cl}_{4n_1+6n_2+2n_3}(g)$ |       |                             |                                   |                    |                           |                     |                          |            |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|-----------------------------------|--------------------|---------------------------|---------------------|--------------------------|------------|
|                                           |                                                                                                                                             |       |                             |                                   | Pressure           | at $\overline{T}$ , mm-   |                     |                          |            |
| Conditions                                | T <sub>min</sub> , °K                                                                                                                       | Ť, °K | $P^{0}_{\mathrm{A1_2C1_6}}$ | $P'_{\mathrm{Al}_2\mathrm{Cl}_6}$ | $P_{\rm Al_2Ol_6}$ | $P^{0}_{\mathrm{Cl}_{2}}$ | $P_{\mathrm{Cl}_2}$ | $P_{U(V)-Al-Cl}$ complex | Absorbance |
| Expt 30E                                  | 456.3                                                                                                                                       | 467   | 1004                        | 1004                              | 999                | 596                       | 591                 | 9.67                     | 0.146      |
| $W_{\rm UCl_4} = 0.1165  {\rm g}$         | 462.4                                                                                                                                       | 473   | 1017                        | 1017                              | 1011               | 603                       | 597                 | 11.07                    | 0.165      |
| $W_{Al_2Cl_6} = 0.5774 \text{ g}$         | 464.6                                                                                                                                       | 476   | 1023                        | 1023                              | 1017               | 607                       | 601                 | 11.88                    | 0.176      |
| $P^{0}_{Cl_{2}}$ at 298°K = 380 mm        | 486.2                                                                                                                                       | 497   | 1069                        | 1068                              | 1058               | 634                       | 625                 | 18.33                    | 0.260      |
| V = 62.75  ml                             | 515.3                                                                                                                                       | 524   | 1127                        | 1125                              | 1109               | 668                       | 652                 | 31.96                    | 0.430      |
| l = 20.63  cm                             | 542.7                                                                                                                                       | 551   | 1185                        | 1181                              | 1156               | 703                       | 677                 | 51.58                    | 0.660      |
|                                           | 569.6                                                                                                                                       | 576   | 1238                        | 1232                              | 1193               | 734                       | 694                 | 79.24                    | 0.970      |
|                                           | 571.9                                                                                                                                       | 578   | 1243                        | 1236                              | 1193               | 737                       | 694                 | 86.89                    | 1.060      |
|                                           | 596.3                                                                                                                                       | 602   | 1294                        | 1284                              | 1226               | 768                       | 710                 | 116.11                   | 1.360      |
| ·                                         | 622.7                                                                                                                                       | 629   | 1352                        | 1334                              | 1262               | 802                       | 729                 | 145.41                   | 1.630      |
| Expt 40E                                  | 429.6                                                                                                                                       | 441   | 1020                        | 1020                              | 1017               | 1305                      | <b>13</b> 02        | 6.86                     | 0.110      |
| $W_{\rm UCl_4} = 0.0174 \ {\rm g}$        | 438.2                                                                                                                                       | 450   | 1041                        | 1041                              | 1039               | 1332                      | 1328                | 8.97                     | 0.141      |
| $W_{\rm Al_2Cl_4} = 0.5894 \ g$           | 445.2                                                                                                                                       | 456   | 1055                        | 1055                              | 1049               | 1350                      | 1345                | 10.50                    | 0.163      |
| P <sup>o</sup> c1, at 298°K = 882 mm      | 458.6                                                                                                                                       | 470   | 1087                        | 1087                              | 1079               | 1391                      | 1383                | 15.41                    | 0.232      |
| V = 59.53  ml<br>l = 20.70  cm            | 475.5                                                                                                                                       | 486   | 1124                        | 1124                              | 1113               | 1438                      | 1427                | 22.12                    | 0.322      |
| Expt 41E                                  | 556.3                                                                                                                                       | 563   | 2452                        | 2446                              | 2403               | 778                       | 734                 | 87.16                    | 1.027      |
| $W_{\rm UCL} = 0.1702  {\rm g}$           | 583.2                                                                                                                                       | 589   | 2566                        | 2554                              | 2482               | 814                       | 741                 | 145.52                   | 1.639      |
| $W_{\rm Al_{a}Cl_{a}} = 1.0364 \text{ g}$ | 610.6                                                                                                                                       | 617   | 2687                        | 2667                              | 2573               | 853                       | 760                 | 186.94                   | 2.010      |
| $P_{\text{Cl}_{a}}^{0}$ at 298°K = 412 mm | 490.2                                                                                                                                       | 501   | 2182                        | 2181                              | 2167               | 693                       | 679                 | 27.94                    | 0.370      |
| V = 55,60  ml                             | 519.4                                                                                                                                       | 528   | 2300                        | 2297                              | 2273               | <b>73</b> 0               | 705                 | 49.34                    | 0.620      |
| l = 19.41  cm                             | 543.4                                                                                                                                       | 551   | 2400                        | 2395                              | 2359               | 762                       | 725                 | 73.50                    | 0.885      |
|                                           | 570.0                                                                                                                                       | 576   | 2509                        | 2500                              | 2445               | 796                       | 740                 | 111.57                   | 1.285      |
|                                           | 596.7                                                                                                                                       | 602   | 2622                        | 2607                              | 2567               | <b>83</b> 2               | 751                 | 161.52                   | 1.780      |
|                                           | 623.3                                                                                                                                       | 629   | 2740                        | 2727                              | 2604               | 870                       | 760                 | 220.92                   | 2.330      |
|                                           | 517.1                                                                                                                                       | 526   | 22 <b>91</b>                | 2289                              | 2260               | 727                       | 700                 | 54.71                    | 0.690      |
| Expt 43E                                  | 510.2                                                                                                                                       | 520   | 2454                        | 2452                              | 2408               | 3062                      | 3018                | 87.02                    | 1.105      |
| $W_{\rm UCl_4} = 0.1405  {\rm g}$         | 533.9                                                                                                                                       | 543   | 2562                        | 2558                              | 2493               | 3198                      | 3131                | 133.22                   | 1.620      |
| $W_{\rm Al_2Cl_6} = 0.995 \ g$            | 496.1                                                                                                                                       | 506   | 2388                        | 2386                              | 2358               | 2980                      | 2951                | 57.24                    | 0.747      |
| $P^{0}_{Cl_{2}}$ at 298°K = 1755 mm       | 510.0                                                                                                                                       | 520   | 2454                        | 2452                              | 2404               | 3062                      | 3015                | 92.92                    | 1.180      |
| V = 49.27  ml                             | 523.4                                                                                                                                       | 532   | 2510                        | 2507                              | 24 <b>3</b> 9      | 3133                      | 3065                | 136.16                   | 1.690      |
| l = 19.32  cm                             | 532.0                                                                                                                                       | 541   | 2553                        | 2549                              | 2469               | 3186                      | 3118                | 158.94                   | 1.940      |
|                                           | 545.6                                                                                                                                       | 553   | 2610                        | 2604                              | 2519               | 3257                      | 3171                | 172.94                   | 2.065      |

TABLE III DATA FOR THE REACTION  $UCL(s) + n_2 Al_2 Cl_2(g) = U_2 Al_2 Cl_2(g) = 0$ 

of the  $\epsilon$ 's was found in the range 440–630°K, although appreciable spectral changes were noted at higher temperatures as discussed below.

(c) In order to determine  $n_1$ ,  $n_2$ , and  $n_3$  in eq 9, a series of experiments with excess UCl<sub>4</sub>(s) and varying Al<sub>2</sub>Cl<sub>6</sub>(g) and Cl<sub>2</sub> pressures was performed. The data are listed in Table III. In the four experiments of this series, the Al<sub>2</sub>Cl<sub>6</sub>(g) and Cl<sub>2</sub>(g) pressures at 500°K were, respectively, 2.9 and 0.9 atm (expt 41E); 3.1 and 3.9 atm (expt 43E); 1.5 and 1.9 atm (expt 40E); 1.4 and 0.8 atm (expt 30E).

In Table III,  $P_{Al_{3}Cl_{6}}$  gives the pressure of Al<sub>2</sub>Cl<sub>6</sub>(g) calculated from the ideal gas law at the average cell temperature,  $\overline{T}$ . The manner in which  $\overline{T}$  was obtained is described in the Experimental Section. An approximate calculation of the Al<sub>2</sub>Cl<sub>6</sub> pressure using the van der Waals equation of state showed the pressures to differ from the ideal gas law pressure by less than 1% and this correction was omitted. There are, however, two corrections to the Al<sub>2</sub>Cl<sub>6</sub>(g) pressure which must be taken into account. The first is due to the dissociation reaction<sup>25-27</sup>

$$Al_2Cl_6(g) = 2AlCl_3(g)$$
(10)

The equilibrium constant, K, for equilibrium 10 was calculated from values tabulated in JANAF tables<sup>28</sup> for  $400^{\circ}K \leq \overline{T} \leq 1000^{\circ}K$ . These values, when fitted to the function

$$\log K = A + (B/T) + (C/T^2)$$
(11)

by the method of least squares, give

$$\log K = 6.649 - (5.684 \times 10^3/T) - (1.607 \times 10^5/T^2) \quad (12)$$

The dimer pressure corrected for equilibrium 10 only is given by

$$P'_{\rm Al_2Cl_6} = 0.5[2P_{\rm Al_2Cl_6} + (K/4) - \sqrt{P_{\rm Al_2Cl_6}K + (K^2/16)]}$$
(13)

The second correction is due to the consumption of Al<sub>2</sub>Cl<sub>6</sub> in reaction 9. In Table III,  $P_{\text{Al}_2\text{Cl}_6}$  is the dimer pressure corrected for reaction 10 and for reaction 9 with  $n_2 = 1/_2$ . Chlorine pressures were calculated for  $\overline{T}$  using the ideal gas law and have been corrected for Cl<sub>2</sub> consumption due to reaction 9 with  $n_2 = 1/_2$ . The partial pressures of the U(V)-Al-Cl complex listed in

<sup>(25)</sup> W. Fischer, O. Rahlfs, and B. Benze, Z. Anorg. Allgem. Chem., 205, 1 (1932).

<sup>(26)</sup> A. Smits and J. L. Meijering, Z. Physik. Chem., B41, 98 (1938).
(27) G. E. Vrieland and D. R. Stull, J. Chem. Eng. Data, 12, 532 (1967).

 <sup>(21)</sup> G. E. Vieland and D. R. Stall, J. Chem. Eng. Data, 12, 52 (1967).
 (28) "JANAF Thermochemical Data," The Dow Chemical Co., Thermal Laboratory, Midland, Mich.



Figure 5.—Plots of log K vs.  $1/T_{min}$  for eq 9 using four different sets of  $n_1$ ,  $n_2$ , and  $n_3$  values.

Table III were calculated for  $\overline{T}$  using eq 2 with  $\epsilon_{U(V)-A1-C1} = 21.3 \text{ } 1./\text{mol cm} \text{ at } 6649 \text{ cm}^{-1}.$  The listed pressures are for a mononuclear uranium vapor species. There are a number of ways in which the data of Table III could be treated in order to extract values of  $n_1$ ,  $n_2$ , and  $n_3$ . The approach adopted here was to chose reasonable values of  $n_1$ ,  $n_2$ , and  $n_3$  and to plot log K for reaction 9 as a function of  $1/T_{\min}$ . The results are shown graphically in Figure 5 with least-squares lines drawn through the points. The sums of the squared deviations are 0.032, 0.20, 0.56, and 1.07 for the following sets of  $n_1$ ,  $n_2$ ,  $n_3$  values: 1, 0.5, 0.5; 1, 1, 0.5; 2, 0.5, 1; 2, 1, 1, respectively. It is seen, therefore, that of the four sets of likely  $n_1$ ,  $n_2$ , and  $n_3$  values, the set with  $n_1 = 1$ ,  $n_2 = 0.5$ ,  $n_3 = 0.5$  gives a significantly better fit to the data than the other three. Our data therefore can be consistently interpreted in terms of the equilibrium

$$UCl_4(s) + \frac{1}{2}Al_2Cl_6(g) + \frac{1}{2}Cl_2(g) = UCl_5 \cdot AlCl_3(g) \quad (14)$$

The free energy change for reaction 14 in the range 440-630 °K is calculated to be

$$\Delta F = 8914 - 10.74T \text{ cal/mol}$$
(15)

It is to be noted that K for reaction 14 is a dimensionless quantity. The partial pressure of  $UCl_5 \cdot AlCl_3(g)$  as a function of temperature and  $Al_2Cl_6(g)$  and  $Cl_2(g)$  pressures is given by

$$\log P_{\rm UCl_5,AlCl_3} = -\frac{1948}{T} + 2.347 + \frac{1}{2} \log P_{\rm Al_2Cl_6(g)} + \frac{1}{2} \log P_{\rm Cl_2(g)}$$
(16)

A few words are in order regarding the reason for plotting log K vs.  $T_{\min}$  rather than  $\overline{T}$ .

Solid UCl<sub>4</sub> originally in other parts of the cell is transported to the point of minimum temperature and equilibrium 14 is established there. The partial pressures of UCl<sub>5</sub>·AlCl<sub>8</sub>, Al<sub>2</sub>Cl<sub>6</sub>, and Cl<sub>2</sub>, however, will be dependent on the average temperature distribution throughout the cell. A reasonable way to take this fact into account is to use an average temperature, T, to calculate the pressures but to use the minimum cell temperature,  $T_{min}$ , for calculating the equilibrium constant of the reaction 14.

One can calculate the partial pressures of the UCl<sub>3</sub>·AlCl<sub>3</sub> complex in the UCl<sub>4</sub>-Al<sub>2</sub>Cl<sub>6</sub>-Cl<sub>2</sub> system and U<sub>2</sub>Cl<sub>10</sub> in the UCl<sub>4</sub>-Cl<sub>2</sub> system as a function of temperature from eq 16 and 7, respectively. For UCl<sub>5</sub>·AlCl<sub>3</sub>, at 1 atm of Al<sub>2</sub>Cl<sub>6</sub> and 1 atm of Cl<sub>2</sub> pressure,  $P_{\text{complex}}$  turns out to be 34 mm at 500°K and 87 mm at 600°K. For U<sub>2</sub>Cl<sub>10</sub> at 1 atm of Cl<sub>2</sub> pressure,  $P_{\text{dimer}}$ is 0.44 mm at 500°K and 5.5 mm at 600°K. The ratio of partial pressures of uranium-containing vapor species on a per mole of uranium basis is 36 at 500°K and 8 at 600°K.

At  $420^{\circ}$ K, the vapor pressure of  $Al_2Cl_6$  is 0.1 atm.<sup>26</sup> If a gas mixture consisting of 0.1 atm of  $Al_2Cl_6$  and 0.9 atm of  $Cl_2$  were to be passed over solid UCl<sub>4</sub> at  $420^{\circ}$ K (147°), the resultant gas stream would contain a partial pressure of UCl<sub>5</sub>·AlCl<sub>5</sub> of 1.3 mm under equilibrium conditions. If in a similar experiment conducted in the absence of  $Al_2Cl_5$ , a stream of  $Cl_2$  gas at  $420^{\circ}$ K and 1 atm pressure were passed over UCl<sub>4</sub>, the saturated vapor would contain a partial pressure of 0.024 mm of U<sub>2</sub>Cl<sub>10</sub>. The addition of 0.1 atm of  $Al_2Cl_6$  to the gas stream therefore is calculated to result in an increased volatility of uranium, on a per mole basis, by a factor of 27.

The remarkable similarity of the UCl<sub>5</sub> · AlCl<sub>3</sub> spectrum (Figure 2A) and the "octahedral" U2Cl10 spectrum (Figure 2B) can be accounted for on the assumption that the uranium atom in  $UCl_5$  AlCl<sub>3</sub> is also situated at a site of octahedral symmetry. A plausible structure for the complex molecule therefore is one in which a  $[UCl_6]$  octahedron shares an edge with an  $[AlCl_4]$ tetrahedron. Both the energies and the molar absorptivities of the transitions are very closely similar for  $U_2Cl_{10}$  and  $UCl_5 \cdot AlCl_3$ , with the exception of the lowest energy band. An even more remarkable circumstance is the close correspondence of the vibronic fine structure in the 6000-7000-cm<sup>-1</sup> region. It appears that the vibrational frequencies of the  $[UCl_{6}]$  octahedron which are coupled to electronic transitions of the 5f configuration are not seriously perturbed in going from the dimer to the aluminum chloride complex.

Using free energy eq 6 and 15, one calculates  $\Delta F$  for the reaction

$$U_2Cl_{10}(g) + Al_2Cl_6(g) = 2UCl_5 \cdot AlCl_3(g)$$
(17)

to be

$$\Delta F = 2696 - 6.10T \text{ cal/mol}$$
(18)



Figure 6.—"High-temperature" spectra of uranium pentachloride: A, UCl<sub>4</sub>-AlCl<sub>3</sub>-Cl<sub>2</sub> system at 852°K; B, UCl<sub>4</sub>-Cl<sub>2</sub> system at 844°K.

The small enthalpy of the gas-phase reaction between the  $U_2Cl_{10}$  dimer and the  $Al_2Cl_6$  dimer to form the  $UCl_5 \cdot AlCl_3$  complex indicates that the metal-halogen bond energies are only slightly affected in forming the complex. This circumstance in turn could be responsible for the small changes in vibrational frequencies to which attention has been called.

Equation 18 allows one to calculate the  $U_2Cl_{10}$  partial pressure in equilibrium with  $UCl_5 \cdot AlCl_3$ . It turns out that in the present series of measurements there was at most 2%  $U_2Cl_{10}$  in equilibrium with  $UCl_5 \cdot AlCl_3$ .

Although eq 18 predicts diminishing dimer pressures at higher temperatures, the "high-temperature" spectrum of the complex increasingly resembles the "hightemperature" uranium pentachloride spectrum as illustrated in Figure 6.

With increasing temperature, the dissociative equilibrium (eq 10) becomes more important so that a maximum in the partial pressure of the complex is to be expected. It appears then that at the higher temperatures (>800°K) a new species (possibly UCl<sub>5</sub>(g)) becomes the predominating one, both in the presence and in the absence of aluminum chloride.

Uranium Tetrachloride-Aluminum Chloride Vapor Complex.—In earlier work,<sup>3</sup> the reaction

$$n_1 \text{UCl}_4(s) + n_2 \text{Al}_2 \text{Cl}_6(g) = \text{UAl}_{2n_2} \text{Cl}_{4n_1+6n_2}(g)$$
 (19)

was studied over a very limited range of  $Al_2Cl_6$  pressures. The considerable volatility of the uranium tetrachloride-aluminum chloride complex was demonstrated in that work but the data could not be used to establish the stoichiometry and the thermodynamics of reaction 19.

The present series of measurements was performed over a range of Al<sub>2</sub>Cl<sub>6</sub> pressures varying from 0.8 to 5 atm at temperatures from 600 to  $800^{\circ}$ K. The data listed in Table IV are for temperatures at which all of the AlCl<sub>3</sub> added to an optical cell is in the vapor phase. Under the conditions employed in these experiments, UCl<sub>4</sub> appears not to form a solid compound with AlCl<sub>3</sub> so that all of the data points refer to equilibrium 19. The amounts of UCl<sub>4</sub> and AlCl<sub>3</sub> in each experiment, cell volumes, and cell path lengths are listed in Table IV. Furthermore, Table IV gives T,  $T_{\min}$ ,  $P^0$ , the ideal gas law pressure of Al<sub>2</sub>Cl<sub>6</sub>, P', the Al<sub>2</sub>Cl<sub>6</sub> pressure corrected for the dissociative equilibrium (eq 10), P, the Al<sub>2</sub>Cl<sub>6</sub> pressure corrected for consumption by complex formation, the absorbance at 8734 cm<sup>-1</sup>, and finally the pressure of the U(IV)–Al–Cl complex calculated using eq 2.

In a separate experiment, the molar absorptivity of the complex was determined by measuring, as a function of temperature, the absorbance of a cell to which 4.5 mg of UCl<sub>4</sub> and 0.58 g of AlCl<sub>3</sub> had been added. The plot of absorbance at 8734 cm<sup>-1</sup>, the maximum of the most intense band of the complex, vs. temperature attained zero slope at 625°K and remained constant up to 870°K. It was concluded that all of the UCl<sub>4</sub> initially added to the cell had vaporized as complex at 625°K. From these data one calculates  $\epsilon_{8734 \text{ cm}^{-1}} =$ 25.9.

The absorption spectrum of the complex at  $845^{\circ}$ K is shown in Figure 7B together with the spectrum of UCl<sub>4</sub> vapor (Figure 7A) measured at 1225°K. At 8734 cm<sup>-1</sup>, the molar absorptivity of UCl<sub>4</sub>(g) is 5.5. At 700°K, the vapor pressure of UCl<sub>4</sub> is  $3 \times 10^{-2}$  mm while in a typical experiment, the vapor pressure of the complex is 30 mm. The contribution of UCl<sub>4</sub>(g) to the measured absorbance at 8734 cm<sup>-1</sup> therefore is less than 0.1% and can be neglected.

In order to determine  $n_2$  in reaction 19, equilibrium quotients K were calculated for  $n_2 = 0.5$ , 1, 1.5, and 2. Log K's were plotted  $vs. 1/T_{\min}$  and least-squares lines were determined for all of the data points. The sums of the squared deviations were 0.234, 0.106, 0.758, and 2.32, respectively, for the  $n_2$  values listed above. Only the graph for  $n_2 = 1$  is reproduced (Figure 8) since this model represents the best fit of the data. The data are therefore well represented in terms of the reaction

$$UCl_4(s) + Al_2Cl_6(g) = UCl_4 \cdot Al_2Cl_6(g)$$
(20)

|                                       |                       |                     |                                          | 1 THE AND AND AND  | (0)               |                           |            |
|---------------------------------------|-----------------------|---------------------|------------------------------------------|--------------------|-------------------|---------------------------|------------|
|                                       |                       |                     |                                          |                    |                   |                           |            |
| Conditions                            | T <sub>min</sub> , °K | $\overline{T}$ , °K | $P^{0}_{\mathrm{Al}_{2}\mathrm{Cl}_{6}}$ | $P'_{ m Al_2Ol_6}$ | $P_{ m Al_2Cl_6}$ | $P_{U(IV)-Al-Cl}$ complex | Absorbance |
| Expt 20E                              | 593.5                 | 598                 | 1308                                     | 1298               | 1292              | 5.19                      | 0.070      |
| $W_{\rm UCl_4} = 0.1319 \ {\rm g}$    | 653.2                 | 659                 | 1441                                     | 1410               | 1394              | 14.54                     | 0.178      |
| $W_{\rm Al_2Cl_6} = 0.5197 \ g$       | 701.5                 | 707                 | 1546                                     | 1478               | 1449              | 29.80                     | 0.340      |
| V = 55.54 ml                          | 752.1                 | 756                 | 1653                                     | 1521               | 1450              | 73.09                     | 0.780      |
| l = 19.41  cm                         | 807.1                 | 808                 | 1767                                     | 1522               | 1382              | 152.24                    | 1.520      |
|                                       | 839.7                 | 840                 | 1837                                     | 1497               | 1315              | 203.04                    | 1.950      |
| Expt 25E                              | 636.0                 | 642                 | 3359                                     | 3323               | 3289              | 32,75                     | 0.215      |
| $W_{\rm UCl_4} = 0.1081 \ {\rm g}$    | 675.2                 | 681                 | 3563                                     | 3493               | 3432              | 62.05                     | 0.384      |
| $W_{\rm Al_2Cl_6} = 0.6440 \ g$       | 710.7                 | 716                 | 3746                                     | 3626               | 3533              | 94,29                     | 0.555      |
| V = 28.76  ml                         | 731.4                 | 736                 | 3851                                     | 3692               | 3558              | 136.56                    | 0.782      |
| l = 10.14  cm                         | 756.8                 | 760                 | 3977                                     | 3758               | 3562              | 201.97                    | 1.120      |
|                                       | 786.6                 | 788                 | 4123                                     | 3815               | 3539              | 286.06                    | 1.530      |
| Expt 26E                              | 673.6                 | 679                 | 694                                      | 664                | 651               | 12.78                     | 0,078      |
| $W_{\rm UCl_4} = 0.1079 \ \rm g$      | 718.2                 | 723                 | 739                                      | 681                | 657               | 25.83                     | 0.148      |
| $W_{\rm Al_2Cl_6} = 0.1290 \text{ g}$ | 764.3                 | 767                 | 784                                      | 682                | 634               | 51.47                     | 0.278      |
| V = 29.50  ml                         | 865.3                 | 866                 | 885                                      | 605                | 463               | 176.84                    | 0.846      |
| l = 9.97  cm                          |                       |                     |                                          |                    |                   |                           |            |





 $\label{eq:Figure 7.-Absorption spectra of gaseous UCl_4 at 1225°K (A) and of gaseous UCl_2(AlCl_4)_2 at 845°K (B).$ 

The free energy of this reaction is given by

$$\Delta F = 15,780 - 15.30T \text{ cal/mol}$$
(21)

It should be noted that K for this reaction is dimensionless. The partial pressure of the complex can be expressed by the equation

$$\log P_{U(IV)-Al-Cl} = -\frac{3450}{T} + 3.34 + \log P_{Al_2Cl_6} \quad (22)$$

Using  $\Delta F = -47,700 + 47.6T$  for the reaction<sup>6</sup>

$$UCl_4(g) = UCl_4(s) \tag{23}$$

and  $\Delta F$  for reaction 20, one calculates  $\Delta F$  for the reaction

$$UCl_4(g) + Al_2Cl_6(g) = UCl_4 \cdot Al_2Cl_6(g)$$
(24)

to be -31,920 + 32.3T cal/mol.

The large negative enthalpy of this gas-phase reaction can be rationalized in terms of generalized acid-base considerations. From this viewpoint,  $UCl_4(g)$  is a relatively good electron-donor molecule vis à vis  $Al_2Cl_6$ . Although supporting spectroscopic data are lacking, we propose that the complex molecule be formulated as  $UCl_2(AICl_4)_2$  to indicate the transfer of two chlorides from  $UCl_4$  to form two [AICl\_4] groups.



Figure 8.—Plot of log K vs.  $1/T_{min}$  for reaction 20.

It is instructive to compare the volatility of the uranium tetrachloride-aluminum chloride complex in the presence of 1 atm of  $Al_2Cl_6$  to the volatility of pure UCl<sub>4</sub>. Using eq 22 and the known vapor pressure equation<sup>6</sup> of solid UCl<sub>4</sub>, one obtains for the volatility ratio  $P_{UCl_2(AlCl_4)/2}/P_{UCl_4}$ 

$$\log V_{\rm r} = \frac{6980}{T} - 7.1 \tag{25}$$

Typical  $V_r$  values are  $\sim 10^7 (500^{\circ} \text{K})$ ,  $\sim 10^4 (600^{\circ} \text{K})$ ,  $\sim 10^3 (700^{\circ} \text{K})$ , and  $\sim 10^2 (800^{\circ} \text{K})$ . It is noteworthy that the vapor pressure of the complex at  $600^{\circ} \text{K}$  in the presence of 1 atm of Al<sub>2</sub>Cl<sub>6</sub> is 0.4 mm. Since UCl<sub>4</sub> does not appear to form a solid complex with AlCl<sub>3</sub>, transport of UCl<sub>4</sub> in a stream of Al<sub>2</sub>Cl<sub>6</sub>(g) should occur at temperatures as low as  $600^{\circ} \text{K}$ .

## **Experimental Section**

AlCl<sub>8</sub> was prepared by passing HCl over analytical grade Al wire ( $<10^{-6}$  ppm total impurities, Cominco Products, Inc., Spokane, Wash.) at about 500°K. The HCl, produced by treating NaCl with H<sub>2</sub>SO<sub>4</sub>, was dried by passage through an acetone-Dry Ice trap. The AlCl<sub>8</sub> was sublimed in an HCl atmosphere and HCl was pumped off under vacuum. UCl<sub>4</sub> (Special Materials, ANL) was sublimed at 800°K in an N<sub>2</sub> stream saturated with CCl<sub>4</sub>. The sublimate was stored in an evacuated container. Chlorine gas (99.965% minimum purity, The Matheson Co., Inc., Joliet, Ill.) was condensed in the optical cells using liquid

 $N_2$ . UCl<sub>4</sub> and AlCl<sub>3</sub> were weighed out on a microbalance and transferred to an optical cell in a helium drybox whose water content was <3 ppm.

In order to permit spectral measurements to be made over as large a temperature and pressure interval as possible, heavy-walled cylindrical cells (wall thickness 2–3 mm) and 10- or 20-cm path lengths were used, with volumes ranging between 30 and 75 cm<sup>3</sup>. The cells were fabricated from quartz tubes by fusing 3-mm thick quartz windows on the ends making sure that the entire window thickness was employed in making the seal. Several cells ruptured before this procedure in making the seals was adopted. Cell volumes were determined to within 0.2% by pycnometric weighing and the path length was measured with a caliper to  $\pm 0.03$  cm. The cells, after addition of measured amounts of UCl<sub>4</sub>, Al<sub>2</sub>Cl<sub>6</sub>, and Cl<sub>2</sub> gas, were sealed off under vacuum at the side arm.

The cells were placed in a cylindrical furnace of a type previously described.<sup>29</sup> Spectra were generally measured in the temperature range 400-700 °K and total pressures of 1–5 atm.

In order to prevent condensation of  $AlCl_3$  or  $UCl_4$  on the windows and to minimize heat losses, small auxiliary Pt heaters were placed in both end portions of the furnace and the ends of the furnace were fitted with outer quartz windows. The voltage of the Pt heaters was kept constant over a run. With this arrangement, the temperature at the cell windows was about  $40^{\circ}$ 

(29) D. M. Gruen and C. W. DeKock, J. Chem. Phys., 45, 455 (1966).

higher than the middle of the cell at  $500^{\circ}$ K and only a few degrees higher at  $800^{\circ}$ K. Calibration curves for the temperature distribution along the cells were obtained as a function of temperature with a dummy cell in the furnace. In order to vary the position of the thermocouple within the cell, a small hole was drilled through the furnace and cell windows. Heat losses were found to be somewhat less during an actual run so that the average temperatures T, determined in the calibration runs, are estimated to be within 5° of the actual temperature.

During the runs, the temperature was measured with the thermocouple situated near the middle of the furnace adjacent to the cells. It was found that this temperature was within  $\pm 0.5^{\circ}$  of the minimum temperature  $T_{\min}$ , measured inside the cell during a calibration run.

A Cary 14 H spectrophotometer with the sequence: light source  $\rightarrow$  chopper  $\rightarrow$  sample  $\rightarrow$  monochromator  $\rightarrow$  detector  $\rightarrow$ ac amplifier  $\rightarrow$  recorder was used for the spectral measurements. The usefulness of this arrangement for high-temperature measurements has been described elsewhere.<sup>30</sup>

Acknowledgment.—The authors wish to express their thanks to Dr. S. Siegel for his X-ray diffraction identification of UCl<sub>4</sub>. Work was performed under the auspices of the U. S. Atomic Energy Commission.

(30) D. M. Gruen, Quart. Rev. (London), 19, 349 (1965).

Contribution from the Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa 50010

## Kinetics and Mechanism of the Oxidation of Vanadium(II) by Vanadium(V) in Aqueous Perchlorate Solutions<sup>1a</sup>

By JAMES H. ESPENSON<sup>1b</sup> and LEE A. KRUG

Received July 25, 1969

The reaction of V<sup>2+</sup> and VO<sub>2</sub><sup>+</sup> in perchloric acid solution occurs mainly to produce V<sup>3+</sup> and VO<sup>2+</sup>, although both the rate and stoichiometry are affected to some extent by a side reaction between V<sup>3+</sup> and VO<sub>2</sub><sup>+</sup>. After correction for that effect, the main reaction was found to follow the rate expression  $-d[VO_2^+]/dt = \{a + b[H^+]\}[V^{2+}][VO_2^+]$ . At  $\mu = 1.00 M$  and 25.0°,  $10^{-3}a = 2.58 \pm 0.10 M^{-1} \sec^{-1}$  and  $10^{-3}b = 2.16 \pm 0.15 M^{-2} \sec^{-1}$ . The rate constants were evaluated at other temperatures giving the following activation parameters:  $\Delta H_a^{\pm} = 1.9 \pm 0.4$  kcal mol<sup>-1</sup>,  $\Delta S_a^{\pm} = -36.8 \pm 1.4$  eu,  $\Delta H_b^{\pm} = 1.8 \pm 0.9$  kcal mol<sup>-1</sup>, and  $\Delta S_b^{\pm} = -37.3 \pm 3.1$  eu. The rate constant of  $(4 \pm 1) \times 10^5 M^{-1} \sec^{-1}$ . Possible reaction mechanisms are discussed.

#### Introduction

Vanadium is known in four oxidation states in acidic aqueous solution, representing oxidation numbers +2through +5. Each of the ions  $V(H_2O)_6^{2+}$ ,  $V(H_2O)_6^{3+}$ ,  $VO^{2+}$ , and  $VO_2^+$  is stable with respect to disproportionation since the ions become uniformly better oxidizing agents as the oxidation state increases.<sup>2</sup> The lower two ions must be protected from oxygen oxidation,<sup>3,4</sup> and both reduce perchlorate ion at appreciable rates,<sup>5</sup> rendering them metastable with respect to

(1) (a) Work was performed in the Ames Laboratory of the U. S. Atomic Energy Commission. Contribution No. 2599. (b) Fellow of the Alfred P. Sloan Foundation, 1968-1970.

(2) W. M. Latimer, "Oxidation Potentials," 2nd ed, Prentice-Hall, Inc., New York, N. Y., 1952.

(3) J. B. Ramsey, R. Sugimoto, and H. DeVorkin, J. Am. Chem. Soc., 63, 3480 (1941).

oxidation by the perchlorate salts that usually constitute the preferred reaction media.

The rates of the electron-exchange reactions of adjacent ions have been measured:  $V^{2+}$  and  $V^{3+,6}$   $V^{3+}$  and  $VO^{2+,7}$  and  $VO^{2+}$  and  $VO_2^{+,8}$  The net reactions between oxidation states differing by two electrons have also been studied: the conversion of  $V^{2+}$  and  $VO^{2+}$  to  $V^{3+}$ , which occurs in part by way of the unstable intermediate  $VOV^{4+,9}$  and the reaction of  $V^{3+}$  and  $VO_2^{+}$  to form  $VO^{2+,10}$ 

(9) T. W. Newton and F. B. Baker, J. Phys. Chem., 68, 228 (1964); Inorg. Chem., 3, 569 (1964).

<sup>(4)</sup> J. H. Swinehart, Inorg. Chem., 4, 1069 (1965).

<sup>(5)</sup> W. R. King, Jr., and C. S. Garner, J. Phys. Chem., 58, 29 (1954).

<sup>(6)</sup> K. V. Krishnamurty and A. C. Wahl, J. Am. Chem. Soc., 80, 592 (1958).

<sup>(7)</sup> S. C. Furman and C. S. Garner, *ibid.*, 74, 2333 (1952).

<sup>(8)</sup> C. R. Guiliano and H. M. McConnell, J. Inorg. Nucl. Chem., 9, 171 (1959).

<sup>(10)</sup> N. A. Daugherty and T. W. Newton, J. Phys. Chem., 68, 612 (1964).